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ABSTRACT

Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On

the basis of the first-order upwind scheme for a one-dimensional convection equation the two

approaches to upwind differencing are discussed: the fluctuation approach and the finite-

volume approach. The usual extension of the finite-volume method to the multi-dimensional

Euler equations is not entirely satisfactory, because the direction of wave propagation is

always assumed to be normal to the cell faces. This leads to smearing of shock and shear

waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased

fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but

at the expense of robustness. The same is true for the schemes incorporating a multi-

dimensional wave model not based on multi-dimensional data but on an "educated guess"

of what they could be.

The fluctuation approach offers the best possibilities for the development of genuinely

multi-dimensional upwind schemes. Three building blocks are needed for such schemes:

a wave model, a way to achieve conservation, and a compact convection scheme. Recent

advances in each of these components are discussed; putting them all together is the present

focus of a worldwide research effort. Some numerical results are presented, illustrating the
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1 Introduction

('FD algorithms for the coming generation of massively parallel computers will have
to be extremely robust. They will most likely be implemented on adaptive unstruc-
tured grids, and will be used for ambitious simulations of steady and unsteady three-
dimensional flows. In such a complex environment there is little place left for hand-
tuning parameters that regulate accuracy, stability and convergence of the coomputa-
tions. A typical algorithm will make very intensive use of local data, with a minimum
of message passing.

Algorithms of this nature exist already in CED: they are the upwind-differencing
schemes. computationally intensive but unsurpassed in their combination of accuracy
and robustness. While these favorable properties are explainable for one-dimensional
methods, it is a stroke of luck that upwind schemes work as well as they do for
two- and three-dimensional flow. Their design is commonly based on one-dimensional
physics, namely, the solution of the one-dimensional Riemann problem that describes
the interaction of two fluid cells by finite-amplitude waves moving normal to their
interface. The inadequacy of this technique clearly shows up when the numerical
solution contains shock or shear waves not aligned with the grid, for instance, by a
loss of resolution.

The need to incorporate genuinely multi-dimensional physics in upwind algorithms
was recognized as early as 1983 by Phil Roe [1]. A study of discrete multi-dimensional
wave models by Roe followed in 1985 (ICASE Report 85-18, also [21), but it took until

1991 [3] before any algorithms based on such wave models became truly successful.
Important contributions to this development were made by Herman Deconinck and
collaborators [3, 4] at the Von Kirmnin Institute in Brussels. The new upwind schemes
are formulated on unstructured grids with data in the vertices of triangular or tetra-
hedral cells.

While genuinely multi-dimensional methods were slowly developing, partial suc-
cesses were booked by putting some multi-dimensional information into the Riemann
solvers used in conventiona. upwind schemes. In particular, it became the fashion
to obtain a plausible wave-propagation angle from the data, rather than accepting
the angle dictated by the grid geometry. The earliest work of this kind is due to
Steve Davis [5]; it recently was picked up by a number of authors: Levy, Powell and
Van Leer [6], [7], Dadone and Grossman [8, 9], Obayashi and Goorjian [10], Tamura
and Fujii [11]. Roughly speaking, they apply Riemann solvers in several, physically
appealing, directions; I shall refer to their work as the multi-dircctional approach.

Related, bIut closer to the genuinely multi-dimensional approach is the work of
Rumsey, Van Leer and Roe [12, 13, 14, 15] and Parpia and Michalek [16, 17]. These au-
thors independently developed almost identical multi-dimensional wave models based
on minimizing wave strengths. These wave models requires only two input states, just
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Fivire 1: Two views on scalar upwind differencing: (a) nodal-point interpretation:
Sb) finite-volune interpretation.

as a regular Riemann solver.
In support of these quasi-multi-dimensional approaches, aimed at putting better

physics into interface fluxes, some authors have dedicated efforts to improving the
interpolation or reconstruction step that precedes the flux calculation. On a struc-
tured grid the reconstruction of a non-oscillatory distribution of flow variables from
their cell-averages iisually is done dimension by dimension: a fully multi-dimensional
reconst rucion is indispensable in achieving higher accuracy. Barth and Frederickson
- IS7 indicated how to reconstruct a smooth function up to arbitrarily high order on
an unstructured triangulation: Abgrall [19] showed how to implement truly multi-
,Iimensional limiting of higher derivatives.

In this lecture I shall review a decade of efforts toward multi-dimensional upwind-
,tifferening. with the accent on the very latest developments. The discussion is limited
to the multi-dimensional physics that goes into these methods: multi-dimensional
reconstruction will not be further mentioned. For a somewhat different emphasis
or poilt of view the reader is referred to three excellent other reviews of nmulti-
,limensional methods [20. 21. 4] that have been presented in the past year.

2 Two views of one-dimensional upwinding

In order to appreciate the problems surrounding multi-dimensional unwinding it is
useful to consider the principles of one-dimensional upwinding. The reader is assumed
to be familiar with the theory of conservative upwind schemes; as a tutorial Roe's [22]
review article is recommended.

I'l wint differencing is a way of differencing convection terms. For the scalar
(iculv'('T loll equlatioln

Ut + CUr = 0. (1)
the simplest ulpwind-difference scheme, of first-ordei accuracy, reads

,+1 -- " L~ l -- 11'_1i,, + - 0. c > 0: (2)
At Ax
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Figure 2: Two approaches to upwind differencing for the Euler equations: (a) fluctu-
ation approach: (b) finite-volume approach.

uIL +-1 L U 7Ui +-u+ - = 0, c<0. (3)
At Ax

Scheme (2.3) can be regarded as a formula for updating, from t" to t"'+, either the
nodal-point value of u in xi, or the cell average of u in cell i. These two view-points
are illustrated in Figures la and lb. The distinction is significant, because it leads
to distinct methods for more complex equations. In the development of schemes for
the one-dimensional Euler equations. the first view-point has led to the concept of
fluctuation splitting, due to Roe [23, 22]; the second view-point is that of Godunov
[24] and has led to the projection/evolution or reconstruction/evolution concept of
finite-volume schemes, due to Van Leer [25, 26. 27]. Below I shall review the formulas
pertinent to each approach.

2.1 Fluctuation splitting

Assume the system
Ut + F(IT), = 0 (4)

represents the Euler equations in conservation form, i.e.. U = (p, pu, pE)T is the
vector of conserved state quantities and F(U) = (pu, pu2 + p, puH))T is the vector of
their fluxes. The equation shows that any local imbalance of the fluxes causes the
local solution to change in time. Such a local inbalance is called a fluctuation by Roe
[28. 1]. If source terms are present, their value must be included in the fluctuation
[22].

Define the matrix A(U) as the derivative of F(U) with respect to U, so that

dF(U) = A(U)dU. (5)

It is essential for the technique of fluctuation splitting that this differential relation
be replaced by an exact finite-difference analogue, namely,

AF = AAU, (6)

where A indicates a difference between neighboring nodal points. Roe [29] has inI-
,licated how to construct a mean value A of A such that Eq. (6) holds exactly for
arbitrary pairs of state vectors. For a calorically perfect gas a suitable mean value
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Cal) easily Ibe obtained Ib introducing the the parameter vector w = V(1 i. H)T.
Since both ('(iw) and F(w) are quadratic in the components of w. it follows that Eq.
(6) is satisfied by ! =A A (U(wb)), where ?b is the algebraic average of w.

Fluctuation splitting requires that the matrix .A be split into its positive and
negative parts. i.e..

+ = A+ + -. (7)

so that

AF= A+A• + ,AU. (8)

A popular name for this procedure is "flux-difference splitting": the term "fluctuation
splitting" is preferable because it includes source-term splitting. The first term on the
right-hand side combines disturbances that propagate forward: in consequence, this
term is used to update the right nodal point. The second term combines backward-
moving disturbances and is used to update the left nodal point. This concept is
illustrated in Figure 2a. Conservation is ensured because the two terms add up to a
perfect flux difference. The first-order update formula becomes

=L+ LT L AX, + (AAu). 1 )A (9):i-1 + (A At,-"i+j

In practice it often pays to abandon the matrix notation and expand AU and AF
in terms of the individual disturbances. This yields

3

A'V = _akRk. (10)
k.=1

3

AF = E AkakRk, (11)
I~1

where Ak is an eigenvalue of A, Rk is the corresponding eigenvector, and ak is the
wave strength: note that Eqs. (6) and (10) imply Eq. (11). By considering that cach
fluctuation may move forward or backward through the grid, we recover the splitting
formula (8):

_AF = Ak•aRk + _ Akak&R
A.<0 ,\$. >0

3 3

- A+akRk + EAkakRk (12)
k=l k=1

= k-AU + A-Au.

2.2 Finite-velume approach

In the finite-volume approach the focus is on the numerical flux function F (UL, UR),

it recipe for computing the interface fluxes from the states UL and U0' on the left
and right sides of the interface. The generic formula for updating cell averages of the
conserved quantities is

= (7 F-" " (13)

"- - F ?' F171



In (Codunovs first-order scheme the interface flux is taken from the solution at
t > 0 of Riemaun's initial-value problem with input data

U(X, 0) U UL, x > 0, (14)

U(x,0) = UR, x <0; (1)

this is illustrated in Figure 2b.
For many applications it is not necessary to use the exact solution to this problem.

hence the activity in the research area of "approximate Riemaun solvers" [23, 30, 31].
Adopting Roe's [231 approximate solution, which is the exact solution of the locally
linearized equation

Ut + AU. = 0, (16)

we find three equivalent formulas for the interface flux:

F(UL, UR) = FL + A-AU, (17)

F(UL, UR) = FR- A+AU, (18)

F(UL,UR) = I(FL + FR) -AAIAU, (19)
2

where

IAI = +- A-. (20)

In practice the formula (19) is preferred because of its symmetry; the expanded form
's

F(UL, UR) - (FL + FR)- - IAklaktk- (21)

Inserting the flux (19) into the finite-volume scheme (13) yields an scheme that,
with the help of the identity (6). reduces precisely to the fluctuation scheme (9). Yet.
there exists an important difference between Eqs. (19,1:3) and Eq. (9): in the latter
the matrix A must satisfy the identity (6) in order to maintain conservation., while
in Eq. (19) the matrix JAj may be derived from any average A without endangering
conservation. The flux formula (19), due to Van Leer [32, 3:31, preceded the fluctuation
approach of Roe [23], based on (6), by a decade.

3 Intermezzo: how good is one-dimensional up-
winding?

To appreciate the superior accuracy and robustness of upwind differencing in one
dimension, consider the numerical results shown in Figure :3 and 4, taken from [:34]
and [35], respectively. In Figure 3a the exact and discrete Mach-number distributions
for choked flow through a converging-diverging channel are superimposed. First-
order fluctuation splitting was used, including source-term splitting [22, :36] and a
special splitting near the sonic point [34]. Although the update formula is only first-
order accurate, it can be shown that the scheme yields second-order accurate steady
solltions. In fact, in the steady state the scheme reduces to the two-point box scheme
on all meshes except near a sonic point and inside a shock structure, where it becomes
a three-point schene. This yields the smooth transition through the sonic point and
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tile cl-Isi shlock t rarisit iol III the displayed results. FgIrgur 3b) shows thle resir Ii al -
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mievenlt fin. Ini Fligure 4a a shiock less t raii~so ilc soliit ion is reached from Ii iitial val ies
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Figure 4b for local timie-stepping shows nothing unusual.

It is this type of performance we %visit to preserve when extending upwind differ-

enicing to higher dimenisions.

Euler Equations for Channel Flow Euler Equations for Channel Flow
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Figumre 3: Cihoked flow through-l a converging-diverging channel, computed wixith a

fluctuation scheme. (a) Initial and final Mach-number distributions. (b) residual-

conivergence histories for 'global, local arnd characteristic timie-steppinga.

Euler Equations for Channel Flow Convergence History

Mach Number in Channel
2.% *Comp

-Exact

II I -- Initial

2.0 tIt i V -1.0-
I gý1111 1 11 111

I it 1 1 11 Il
itI ~ I I 11 I II

1.50- 41 i ll I1 1 -3.0-

1.0-I I I I 1 l 11 1og( 6.0)
Ii I I 1 1 I I i

I Ill II
it II1 11 II 1

0,50 A II if -7.0-

0.00 , * I I I I -9.0
-i so -090 -0.30 0.30 0.90 1.50 0. 130. 300. 450. 600. 750.

z Iterations

Figure 4: Transonic flow Iin a converging-diverging channel, comiputed with a filictua-

ilot] "Clienwi. (a) hfltial1 andI finial Mlacli-tiiilm er (list rilbitions: ( b) eila-cn ryie

liist~orv for local tl ime-steppi ng.

6



Figure 5: Extending tile finite-volume method to two dimensions by solving one-
dimensional Riemann problems at all cell faces. The arrows symbolize the exchange
of information between cells in the direction normal to their interface.

4 Multi-dimensional extension of the finite-volume
method

Tile standard way to extend upwind differencing to the multi-dimensional Euler equa-
tions is still the same as indicated by Godunov et al. [37] in 1961. For first-order
accuracy, initial values are assumed to be constant in each cell, just as in one di-
mension: fluxes at cell interfaces again follow from solving one-dimensional Riemann
problems of the type (14.15). with x now measuring distance along the normal to the
interface. This is illustrated by Figure 5.

It is the projection of the true initial values onto cellwise constant distributions
(or linear [25, 26] or quadratic [25, 38, :39] or even higher-order distributions [40]) that
creates discontinuities at the interfaces. This leads us to introducing plane wave fronts
parallel to the interface, and selecting, out of all possible directions, the interface
normal as the direction for wave propagation. If the solution contains only shock
and/or shear waves aligned or nearly aligned with the grid, this choice happens to be
the correct one, and high resolution of such waves can be achieved in the steady state,
,just as in one dimension. If, however, such waves are far from aligned with the grid.
they get misrepresented by the upwind scheme as pairs of grid-aligned waves, as shown
in Figure 6 for a shear wave. Thus, a grid-oblique stationary wave may be represented
by several grid-aligned running waves, leading to higher numerical dissipation and a
considerable loss of resolution.

Another purely numerical artifact caused by grid-aligned upwinding is the pres-
ence of pressure disturbances across a grid-oblique shear layer. First observed by
Venkatakrishnan [41], the explanation was provided by Rumsey et al. [12]; this phe-
nomenon is further discussed in Section 4.2.

From the above critique one should not conclude that in higher dimensions the
standard upwind methods are inferior to other methods: the loss of accuracy just is
much more obvious for upwind methods.
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Figure 6: Misinterpretation of a grid-oblique shear wave by grid-aligned upwiniing.
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Figure 7: Fluxes in a frame aligned with a wave front oblique to the grid lines.

4.1 Multi-directional methods

The smearing of oblique shock waves in numerical solutions has received considerable
attention, and a proportionally large research effort has been spent in mending this
weakness. The prevailing idea is to solve the Riemann problem in a direction more
appropriate than the grid direction. One immediate consequence of leaving the grid-
aligned frame is that solving one Riemann problem no longer suffices. Figure 7 shows
that. in two dimensions, both flux vectors in the rotated frame are needed for the

o.est ruction of the fluxes normal to tht- interfwae.

Consider. for example. Figure 8, showing a rotated coordinate system aligned with
level lines representing a shock front in a discrete solution. It makes sense to solve
a one-dimensional Riemann problem in the direction normal to the front, i.e. using
the flow-velocity components in that direction: this yields the flux in the normal
direction. The input states for the Riemann solver are ULI = LL an&d UlR = ("UR. The
flux tangential to the shock should be obtained from state values located at L11 and

/-11: using ( L and (;R once more would completely destroy the effect of the rotation
[7. 14]). These values could be approximated by

"ILII =RI = I ((U"L + I'R): (22)

this, however, i1)1plics central (Iitferenicing along the shock and leals to odd-even
decoupling in that direction [6. 7. 12].
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Figure 8: A simple multi-directional flux formula.
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Figure 9: Input states for the Riemaun problems in the flux computation according
to Levv et al.

In the work of Davis [5, 4:1]. dating back as far as 198:3, the computation of the
tangent flux actually is more complicated than that of the normal flux. The more
recent work of Levy et al. [6. 7. 421 and Dadone and Grossman [8, 9] is more
mature in that the fluxes are treated without distinction. Figure 9 shows how pairs
of input states to the two Riemann problems, (("Li, (Ri) and (UL"., (UR1), are selected
according to Levy et al. In their first-order method the input states in the rotated
frame are obtained by linear interpolation between neighboring states in a ring of cells
surrounding the interface; Dadone and Grossman simply take the value in the nearest
cell, which apparently adds to the robustness of the method. Another, wider ring of
cells is needed for achieving second-order accuracy.

Various choices can be made for the rotation angle of the frame in which the
Riemann problems are solved. A sensitive quantity is the direction of the velocity-
difference vector, IR - VIL, which was adopted by Davis and also is crucial to the
approach of Rumsey and Parpia (see Section 4.2). Levy et al. use the direction of

the velocity-magnitude gradient VIV,. which can detect both shock and shear waves,

while Dadone and Grossmnan use the pressure gradient Vp. which only detects shocks.
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Figure 10: Shock or shear?

gases. The procedure sees as input a velocity difference not accompanied by a pressure
difference, hence calls for a single shear wave, as if the gases avoided collision!

The flux formula based on the above wave model is worth some discussion. As-
suming the system

Ut + F(U), + G(U)y = 0, (2:3)

with flux Jacobians A(U) and B(U), represents the two-dimensional Euler equations.
we may again write All as a sum:

5

AU = akk (24)
k=1

The vector Rk is now an eigenvector of the matrix

A cos 0 k + b sin Ok, (25)

where Ok indicates the propagation angle of the k-th wave; the matrices A and B are
standard Roe-averages. The upwind-biased interface flux is defined by

1 '5F(UL, LR) = (FL + FR) - E IAk cos(08 - Ononia,) (I lkRk, (26)
k=l

i.e. still by formula (21), but with the wave speeds Ak projected onto the interface
normal. Although this formula seems trivial, it must be pointed out that there no
longer exists a relation between AF and AU like (6).

In numerical practice mniiimum-strength wave models appear to bring tile same
benefits and problems as multi-directiGnal methods: great improvements in shock and
shear resolution for first-order methods, much smaller improvements for second-order
methods, and possible loss of monotonicity and convergence.

To illustrate the performance of this class of methods, consider Figures 12a and
12b. Both show pressure plots for steady viscous flow over a NAC(A 0012 airfoil at
3* angle of attack and Reynolds number 5000, computed on a 129 x 49 O-grid by
Rumsey [12, 14]. Under these conditions the flow separates from the upper surface,

11



cell face

1"

Figure 11: Plane waves crossing a cell face according to the model of Rumsey et al.

producing a detached shear layer oblique to the grid. For the results of Figure 12a a
second-order MUSCL-type scheme [26. 44] was used, with Roe's [23] standard grid-
aligned Riemann solver. The Riemann solver misinterprets the oblique shear as an
grid-aligned shear plus an acoustic wave (see Figure 6); the latter causes a pressure
rise or drop at the interface. Correspondingly, the steady solution shows pressure
fluctuations across the shear layer, so that its presence can actually be detected in
pressure plots. A grid-refinement study shows that the disturbances scale with the
mesh size. This phenomenon was first observed by Venkatakrishnan [41] and correctly
explained by Roe; in fact, it motivated the work of Ruinsey, Van Leer and Roe. As
seen from Figure 12b. the miniinun-strength wave model properly recognizes the
oblique shear layer and generates clean pressure contours.

The same method gives an unexpected improvement in the representation of in-
viscid stagnating flow. The explanation is found in Figure 1:3, showing the turning
of the flow near a stagnation point S as represented by the discrete velocities in the
three cells marked 1, 2 and 3.. A grid-aligned Riemann solver interprets the velocity
difference between vertical neighbors I and 2 as a compression (V/1 > Vy2), and the
velocity difference between horizontal neighbors 2 and :3 as an expansion (V, 2 < V'3);

this leads to pressure variations of the order of __V. The wave model detects only
very small pressure changes (Ap - pA(V 2 )) and therefore explains both velocity dif-
ferences by shear waves. Although this still is not the right explanation, the result is
a decrease in numerical entropy production. The effect is rather large for first-order
methods, as can be judged from Figure 14 showing entropy contours for inviscid flow
over a NACA 0012 airfoil at If = 0.3, a = 1P, on a sequence of O-grids. The reduced
entropy levels lead directly to reduced numerical drag levels, as Figure 15a shows. For
second-order schemes the effect, as usual, is less dramatic; the drag values are given
im Figure 151).
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Figure 12: Viscous separating flow over a NACA 0012 airfoil at AI 0.5, a = 30 and
Re =5000. Pressure contours on a 129 x 49 C-grid, obtained with a second-order
up wind scheme incorporating (a) Roe's grid-aligned Riemann solver; (b) the five-wave
model of Rumsey et al.

5 Multi-dimensional fluctuation approach

The fluctuation approach to upwind differencing lends itself better to extension into
higher dimensions than the finite-volume approach. Recall that a fluctuation is a
local flux imbalance causing a non-zero time derivative of the local solution. For the
one-dimensional Euler equations (4) the quantity -AF equals the residual evaluated
on a one-dimensional mesh:

fJnesh Utdx = - j Fd; dx -AF. (27)

This suggests extension of the fluctuation approach beyond one dimension by regard-
ing each multi-dimensional mesh residual as the sum of a finite number of waves (say,
7n), moving in all possible directions. Thus we discretize the two-dimensional Euler
equations as

J J Utdxdy J(Fdy -Gdx) = (28)

k=1

-- ----
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2 3

Figure 1:3: Turning of the flow in three cells near a stagnation point .5 at a wall.

65 x< 19_

129 x 37

257 x 73

(a) (b)
Figure 14: Entropy contours for inviscid flow over a NACA 0012 airfoil at M = 0.3,
0= 1'. generated on a sequence of O-grids with a first-order scheme incorporating
(a) Roe's grid-aligned Riemann solver; (b) the five-wave model of Rumsey et al.

where the matrices A and b are multi-dimensional averages that remain to be de-
fined. Since the fluctuation approach is a nodal-point approach. and we wish to
develop only schemes of maximum compactness, we shall use a grid of triangular
meshes, with data given in the nodal points. For the computation of the residual
on such meshes it suffices to apply the trapezoidal integration rule on each side of
the triangle. The fluctuations resulting from residual decomposition must be sent to
the triangle's vertices according to some distribution scheme that approximates the
convection equation.

It follows that, for the construction of a genuinely multi-dimensional upwind-
differencing scheme, three components are needed:

1. A reliable multi-dimensional wave model for representing the residual;

2. A way to ensure conservation. i.e. a multi-dimensional extension of Roe's matrix
average:

14
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Figure 15: Grid-convergence study of the drag coefficient based on (a) tile first-order
solutions of Figure 14; (b) the corresponding second-order solutions.

:3. A multi-dimensional convection scheme for advancing the waves.

Each of these will be discussed in a separate subsection.

5.1 Multi-dimensional wave models

The modeling of a local Euler residual by a finite number of waves was launched as
a research subject by Roe [2]; his first paper. however, gave no specific instructions
as to how the model would be used in a numerical integration of the Euler equations.
This is not surprising, given that the other problems - multi-dimensional conservation
and advection - had not yet been addressed.

The latest version of Roe's wave model calls for four acoustic waves, running along
the principal strain axes of the local fluid element, a shear wave making a 45' angle
with the acoustic waves, and an entropy wave running in the direction of the entropy

gradient; see Figure 16. Thus, m = 6 in Eq. (28). These six waves are defined
by two independent angles and six strengths: therefore, eight independent pieces of
information need to be supplied per triangular mesh. This information is available
in the form of the gradient of the state vector; its mesh value is computed with the
trapezoidal rule from the following boundary integrals:

1/ea f l U.,xdy- dq: (29)

Aa "sArea -iesi,

u Area I Ine,,sUdxdy =- 4 ea p Udx. (30)

A detailed discussion of this wave model, including the three-dimensional case, can

be found in Roe's contribution to the present volume [45]; numerical results obtained
with this model are presented in the contribution by Catalano et al. [46].

This section would not be complete without a discussion of the work of Hirsch and
collaborators [47, 48, 49]. Their multi-dimensional approach is based oil diagonalizing
the Euler equations, i.e. changing these into a system of convection equations. by a
transformation of state variables. The transformation itself depends on the local
gradient of the solution, making the diagonalization essentially nonlinear. For certain
data the transformation does not exist, in which case it is chosen so as to minimize

15
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Figure 16: Roe's two-dimensional six-wave model. The acoustic waves run parallel
to the principal strain axes (dashed): the strain ellips (dotted) shows the kinematic
deformation of a circular fluid element.

the off-diagonal terms. The update scheme, though, can be made identical to a
fluctuation-based scheme: decomposition of the residual along certain eigenvectors.
followed bv convection of the components [50]. In two dimensions the diagonalization
is equivalent to using one particular four-wave model: clearly, the fluctuation approach
offers much more flexibility.

5.2 Multi-dimensional conservation

The multi-dimensional extension of Roe's averaging of the flux Jacobian was indepen-
dentlv discovered by Roe and Struijs. and is presented in a joint paper [5 1]. This very
recent (1991) addition to the multi-dimensional toolbox applies exclusively to trian-
Cgular meshes in two dimensions and tetrahedral meshes in three dimensions. The
following description and explanation of the two-dimensional averaging apply to the
special case of a calorically perfect gas.

To begin with, assume that the parameter vector tv = I/'p( L u. v, H) is distibuted
linearly over a mesh triangle with vertices labeled 1. 2 and 3. Denote the average of
it., over the triangle by Cv; we then have

t, =-(w1 + w, + w.). (31)
:3

As before, U(w) and F(wv), and also (_(L). are quadratic in the components of w, so
that the .Jaclobian matrices ,U,, F,, and G, are linear in w. and therefore also ill X
and .y. ('onsidering that 1=•,,w. IY = U, etc.. where w. and wy are constant

over the entire triangle, we conclude that VU., V F and VG also vary linearly over the

triangle. I'sing the definition of the mesh-averaged gradient Vt' given in Eqs. (29),

(30), and similar definitions of VF and VG, we easily derive the relations,

VF .4(! ,,',) ( . (32)

VG - B(U(,t,))VU. (33)
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(a)()
Figure IT: Stencils of two-dimensional upwind convection schemes; case a > b > 0.
(a) Sidilkover's second-order scheme. The fluxes for c:ell I nominally are compurted
by linear interpolation) between upstream pairs of data, but tihe fluxes at th~e North
and South faces must be limited to prevent numerical oscillations. The limiters are
based on the ratios a(ul - u.2)/[b(u.5- U2)] and a(Ua - u4)/[b(u.2 - U4)], respectively.
(b) Standard second- or third-order grid-aligned scheme.

which are direct extensions of the one-dimensional relation (6). The extension to
three-dimensional averaging is self-evident.

5.3 Multi-dimensional convection

The pursuit of multi-diniensional convection schemies has kept a number of authors
busy over tihe past three years. InI two dimensions the basic equation to be solved is

ut + au, + bu,, = 0, (34)

where a and b are constant velocity components, or, in vector notation,

Ut + d-VU = 0 (35)

The first significant work was that of Sidilkover [5c2, who, among other things,
showed how a second-order upwind scheme, with residual computed oi a square desh.
b'an be made non-oscillatory by standard limiters without undue spreading of the

stencil. The domain of dependence for this algorithmn is shown in Fig-ure 17a. for the
case a > b > 0; note how compact this is in comparison to tci stencil of a standard
second-order upwind scheme[ sho w n in Figure 17b [271. He also coined the name
"N-scheme" for the first-order scheme that, on a cartesian grid, takes its data from
the upwind triangle fitting the convection path most tightly (N stands for narrow).
For example, for point 1 in Figure i7a it would be triangle (124). This scheme, as
shown in [53M, is optimal in the sense that, aiong all schemes with upwind triangular
domain of dependence, it combines the smallest truncation error with the largest
stable time-step. The three- demension al extension is also described in [53t .

Whilee triangles in Sidilkover's work were still considered subdivisions of squares,
thef become autonomous in later work by other authors. A major step In the devei-
opwent of two-dimensional convection schemes was the realizatiou that there are two
types of triangles [54]: those with one inflow side and those with two inflow sihes.
This is illustrated in Figure 18. If there is only one Inflow side, the fluctuatioh ap-
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i iieIs: TFwo kind s of trnan gles: (a) with one Infllow Side: ( b) XNvi th two Infilow Sides.

proach dictates that thle enitire residual be used to update the opposite ntode. This is
heit unique -si ngle-t rg-et" form of the scheme. simillar to the one-dimiensional upwind

scheme 2. If. however. there are two inflow sidles. it miax', be argued that the residual
he distributed over the two nodal points defining the third side. This is the *'dulal-
tar'Zet, form of the particuliar scheme-, eachi Choice Of dilstribution weights diefines a

newx scheme. The spreading of the residual information over two points imiplies a
Potential loss of r, ;oliut ion. inrhierenit to miulti-limnensional numerical convection: there
is lit) one-li11ulensiona I analogaiie of this effect.

Ill thle developm ent of mil liti-dilitmensional convect ion schemes. three design criteria
p \a (e cisiVye roleC .ACC OrAIinrg to these, it is desirable for a scheme to be

1. linear: for a ivngridi geomnetry and Iflow angle the solution depends linearly onl
het dlatil. Flb is- promotes convergence to a st eadv numerical solution. It is well

kinow ii t hat the preseince of nonIi near devices in the scheme. such as limiters [4-
a imd fra me rot at ion { see Sect ion 4.2) c-an slow down or even halt the convergence
p rocemss:

2. linearity preserving (LP): data of the form

uit (x ) =bx - aty.(:)

whiich is ai steady solult ion of Eq. .34 are hot changed by the schemle. This
prun lutes." thie' accmi racy of the scheme. It c-an be shown [.5-4] that LP schemes

vi 11 ecoil-rde-acmirtesteady solutions of Eq. 3-14:

:3. positive: thle scheme has positive coefficients. This is sufficient for preventil~ng
nuiimericalI oscilIlat ions.

From one-di1mensional finite-difference theory we know - and have known so for
ai lon, ti me - that the abhove condi tions are inuitually exclusive. There is a famous

t~ herel h% G( ; ulii[2 11 whiiihd says that no linear convect ion-diffusion scheme wvi th

1)05! ti y tlitýCienfiCItS C5 b('a I e inre thIian first -order accuirate. With reference to our de-
siti criteria for mu l ti-dimrensionial con vect ion schemes this theorem reads:

lb c f ()fl no lita ,* iti uc L P)shc s

:ai.non linearity is essential for the (lesian o cuae o-siltr'shms
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(a) (b)
Fiogure N: Dual-target form of convection schemes: (a) N-scheme: (b) LDA-shein.

Among the various upwind convection schemes proposed in recent vears. three
schemes stand out: these are discussed below. They, all are as compact as can be.
requiring data on only one triangle for the approximation of the convection equation.
A small miracle is that even positivity call be achieved u'ithout Icaving tht trianqlt.
Of course, each nodal point is a vertex of a number of triangles and may receive
fluctuations from several of these: programming therefore must be triangle-based.
Some results of numerical experiments are presented in Section 6.

The N-scheme: the optimal linear positive scheme

The name of this scheme suggests equivalence to Sidilkover's N-schemle, but it actu-
ally is more general. Sidilkover's scheme is just the single-target form. common to
all compact schemes: fl ictiiations from trianghles requiring a dual-target scheme are
ignored in the up late. The lhial-target form of the current N-scheme uses distribution

weights proportional to the componelnts of t lie convectioi speed along the two inflow
sides, as depicted in Figure 19a. This makes the scheme optimal in the sense of having
the largest stability range for the time-step [54]. It is also linear and positive, and
therefore can be no more than first-order accurate.

The NN-scheme: the optimal nonlinear positive LP scheme

This scheme is a nonlinear variant of the N-sclieiie. hence the second N. The nonlinear
procedure included in this scheme has absolutely nothing inI common with the TVD-
enforcing limiters included in one-dimensional convection schemes. It is based on
the observation that in the convection equation (35) the component of the convection
velocity if perpendicular to the solution gradient 1it. has no effect on ut. We therefore
are allowed to replace ,7 by any velocity that has the samie component parallel to Vu1.
as shown in Figure 20. This compollent, indicated by il"... is the velocity at which
the level lines of it normal normal to themselves, i.e. the wave speed of the local
distribution of u. This wave speed is the smallest of all admissible convection speeds:
it, actuallv vanikhs with the rqildual. \Ve may how adopt the following strategy: if
both i, and J,. call for a dual-tar•,'t >,iheine. we replace J, by 7,,. iII th1, N-schemne; in
all other cases the s,'heme Ibeconmes or remllaills a sigle- target scheme. him the case of



•~grad u

u c=conlstant

Figure 20: The NN-schIeme: nonlinear single-target form. The convection speed ,7
calls for a dual-target scheme but is replaced by ill, which calls for a single-target
scheme. The wave speed aI, is the component of ri and ii1 parallel to Vu.

Figure 20. 57 is replaced by dl. the nearest admissible speed yielding a single-target
scheme. The resulting scheme does not change any nodal value if the residual vanishes.
hence is LP. and maximizes the allowable time step.

Numerical results indicate that the accuracy of the NN-scheme lies between first-
and second-order: see further Section 6.

The LDA scheme: a non-positive linear LP scheme

This scheme is one of several low-diffusion schemes, designed for a low truncation
error. In the dual-target form of the scheme the distribution weights are inversely
proportional to the areas of the triangles cut from the mesh triangle by a streamline
through the inflow vertex: see Figure 19b. This scheme is not positive, but very accu-
rate: on a uniform grid it achieves third order accuracy, as demonstrated in Section
6.

The above schemes have served as the ba.sis for convection-diffusion schemes in a
studv bv Tomaich and Roe [55]. Since the diffusion operator can not be approximated
on a single triangle, their schemes are formulated with reference to a central nodal
point. Numnerical solutions of the Smith-Hutton [56] test problem demonstrate that
these schemes rival the best exsisting convection-diffusion schemes in accuracy. In
a(ldition. their way of discretizing the Laplacean is directly applicable to any of the
disipative terms included in the Navier-Sokes equations; thus, the basis for genuinely
multi-dimensional Navier-Stokes codes has been laid.

6 Numerical results

To support some of the statements made about the new, compact convection schemes
I first show how these schemes fared in a comparative grid-refinement study by Jens
NI.iil lr [57). The problelm is that of convection of a Gaussian distribution over a sem i-
circle: Inflow is at y = 0. .r < 0. outflow at y = 0. x > 0. Four kinds of grids were
used. of which three examples are displayed in Figure 21. Grids a and 3 derive from
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17Figure 23: (Contours (left) and cut along the x-axis (righlt) of the solution obtained
withi the LDA-sclieme on a 20 x• 20 .3 rid.
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Fioure 24: lIn'.scid flow at Mlach 1.4 through anl inilet, computed by a genuinely
11ul1ti-dimensional upwind Elder code. Shown are Mlach-number contours and the
mist rtict urel 'grid uised.

4. All schemes, decrease their error when diagonals are aligned with the flow.

M ost suirprisino is the achievement of third-order accuracy onl regular grids, consider-
ing the linmitedl amount, of information going into these compact schemes. Figure 2:3
gives anl idea of this high accuracyv by showing solution contours and a cut at y =0
Obt~aiined with the LDA-scheme onl the very coarse 13-grid of Figure 21 (Gaussian rep-
resenited onl 10 meshes). Similar results obtained with three-dimensional extensions
of Hthe schemes c-an be found in Decominck's comprehensive review paper [41.

While the search for compact convection schemes continues, several authors are
trying to puit together the ingredients listed in Section 5, prodIucing a genuinely multi-
dlimensionial upwinrd Elder code . Advanced numerical results can be found in the
prioseiit, vtluiie InI thle contriI limt~i lol (by Calmno et a!. Ani earlier successful calcula-

ton of -,i person ic Hiilet flow bv St riiijs et a!. [31 prou iuced the Mach-contours shown
in Figure 24: superimposed is the moderately irregular triangulation. The results
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median dual

Figure 25: The finite-volume scheme of Barth. Powell and Parpia. based on a trian-
gular grid and its median dual. The flux F1 across one medialn element located in
triangle T is computed using wave data from triangle T and fluxes from the vertices
L, and R. For the flux F2 across the other element in the same triangle tile same
wave data are used, but tile fluxes are taken from L2 and R.

demonstorate the excellent shock-capturing ability of the NN-scheme.

7 Finite-volume schemes revisited

From Section 5 the reader might get the impression that genuinely multi-dimensional
schemes can only be formulated on triangular and tetrahedral meshes, and that they
are incompatible with the finite-volume formulation. If this were true, it would mean
a serious restriction on the use of such schemes within the CFD community, for it
is not at all clear that unstructured triangular or tetrahedral grids are the way of
the future. An alternative, for instance, is offered by adaptive cartesian grids [58].
The emphasis on triangles in Section 5 arises from the experience that the numerical
building blocks, e.g. Roe's matrix averaging, take their simplest form on such meshes.
Therefore. in developing a multi-dimensional scheme of a different format it would be
good practice to start with the wave decomposition of residuals on an underlying
triangular grid.

As an example of such practice, consider the two-dimensional finite-volume Euler
scheme of Powell, Barth and Parpia [59], illustrated in Figure 25. The wave model
indeed is applied to data on triangular meshes; for the update, though, a finite-volume
scheme is chosen. Cell faces are formed from the medians of the triangles, yielding
the so-called median-dual grid. Across each median element of the cell contour a flux
is computed using an equation of the form (26), where L and R denote the vertices
of the triangle side bisected by the median, and the sum includes all waves identified
in the triangle. Note the difference with the scheme of Rumsey et al., where the wave
model would be based solely on UR - UL. The resulting nonlinear scheme, applied
to a scalar convection equation. is LP and positive and appears to be more accurate
than the NN-scheme.
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8Conclusions

lFre sl ate of t heart ill getrrinlelv rrl11ti-dirnlerrsionial uipwind differericirg hias tirade
I r~ rntead Varie C01over tOW p~ast three years. owi ng to a shift fro the finite-voirire

ThI)rod()Ch to tirhit' Ilit lioul approach. [Tre basic ingred1ientst fot rrrlti-(ijuietrsj(Jal
F'lne! 401le>.. i.e. wavre Iiiodcll conservation 1)ritrciple awid con"-irctoi scireire. are reAly
for rutt-ýrat loir. aird tire Hrot nutnerical results took good. The cominhg years wvill v ieb I
mranyv morre Euler appi iatt ois in two andl three dimnensionis. fur-ther imniprovemenets rin

waemodels anrd comnpact conrvection schemnes, and extetiion of the appmroah to the
Miod eling of the Navier-Stokes equations.
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